Title of article :
A converse of Loewner–Heinz inequality and applications to operator means
Author/Authors :
Uchiyama، نويسنده , , Mitsuru and Yamazaki، نويسنده , , Takeaki، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
8
From page :
422
To page :
429
Abstract :
Let f ( t ) be an operator monotone function. Then A ⩽ B implies f ( A ) ⩽ f ( B ) , but the converse implication is not true. Let A ♯ B be the geometric mean of A , B ⩾ 0 . If A ⩽ B , then B − 1 ♯ A ⩽ I ; the converse implication is not true either. We will show that if f ( λ B + I ) − 1 ♯ f ( λ A + I ) ⩽ I for all sufficiently small λ > 0 , then f ( λ A + I ) ⩽ f ( λ B + I ) and A ⩽ B . Moreover, we extend it to multi-variable matrices means.
Keywords :
operator mean , Operator monotone function , Geometric mean , Karcher mean , Loewner–Heinz inequality , Operator concave function , Positive definite operators , Ando–Hiai inequality , power mean
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564317
Link To Document :
بازگشت