Title of article :
Bergeʼs maximum theorem for noncompact image sets
Author/Authors :
Feinberg، نويسنده , , Eugene A. and Kasyanov، نويسنده , , Pavlo O. and Voorneveld، نويسنده , , Mark، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
7
From page :
1040
To page :
1046
Abstract :
This note generalizes Bergeʼs maximum theorem to noncompact image sets. It also clarifies the results from Feinberg, Kasyanov and Zadoianchuk (2013) [7] on the extension to noncompact image sets of another Bergeʼs theorem, that states semi-continuity of value functions. Here we explain that the notion of a K -inf-compact function introduced there is applicable to metrizable topological spaces and to more general compactly generated topological spaces. For Hausdorff topological spaces we introduce the notion of a K N -inf-compact function ( N stands for “nets” in K -inf-compactness), which coincides with K -inf-compactness for compactly generated and, in particular, for metrizable topological spaces.
Keywords :
Berge?s maximum theorem , Set-Valued Mapping , Continuity
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564364
Link To Document :
بازگشت