Title of article :
Fixed point theorems and the Ulam–Hyers stability in non-Archimedean cone metric spaces
Author/Authors :
Huy، نويسنده , , Nguyen Bich and Thanh، نويسنده , , Tran Dinh، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
11
From page :
10
To page :
20
Abstract :
Let ( X , p ) be a metric space with a K-valued non-Archimedean metric p. In this paper, we prove the existence and approximation of a fixed point for operators F : X → X satisfying the contractive condition in the form p ( F ( x ) , F ( y ) ) ⩽ Q [ p ( x , y ) ] , where Q : K → K is an increasing operator. Then, we study the generalized Ulam–Hyers stability of fixed point equations. We next obtain an extension of the Krasnoselskii fixed point theorem for the sum of two operators. Finally, an application to functional equations is given.
Keywords :
Ulam–Hyers stability , Functional equation , Non-Archimedean metric , cone metric space , Fixed point
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564366
Link To Document :
بازگشت