Title of article :
Spectral analysis of non-commutative harmonic oscillators: The lowest eigenvalue and no crossing
Author/Authors :
Hiroshima، نويسنده , , Fumio and Sasaki، نويسنده , , Itaru، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
15
From page :
595
To page :
609
Abstract :
The lowest eigenvalue of non-commutative harmonic oscillators Q ( α , β ) ( α > 0 , β > 0 , α β > 1 ) is studied. It is shown that Q ( α , β ) can be decomposed into four self-adjoint operators, Q ( α , β ) = ⨁ σ = ± , p = 1 , 2 Q σ p , and all the eigenvalues of each operator Q σ p are simple. We show that the lowest eigenvalue of Q ( α , β ) is simple whenever α ≠ β . Furthermore a Jacobi matrix representation of Q σ p is given and spectrum of Q σ p is considered numerically.
Keywords :
No crossing , Crossing , multiplicity , The lowest eigenvalue , Non-commutative harmonic oscillator
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564473
Link To Document :
بازگشت