Title of article :
Eigenfunctions of the weighted Laplacian and a vanishing theorem on gradient steady Ricci soliton
Author/Authors :
Dung، نويسنده , , Nguyen Thac and Le Hai، نويسنده , , Nguyen Thi and Thanh، نويسنده , , Nguyen Thi، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Abstract :
The aim of this note has two folds. First, we show a gradient estimate of the higher eigenfunctions of the weighted Laplacian on smooth metric measure spaces. In the second part, we consider a gradient steady Ricci soliton and prove that there exists a positive constant c ( n ) depending only on the dimension n of the soliton such that there is no nontrivial harmonic 1-form (hence harmonic function) which is in L p on such a soliton for any 2 < p < c ( n ) .
Keywords :
eigenvalues , Eigenfunctions , Gradient steady Ricci soliton , Smooth metric measure spaces , Bakry–Emery curvature
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications