Title of article :
Liouville theorem for the nonlinear Poisson equation on manifolds
Author/Authors :
Ma، نويسنده , , Li and Witt، نويسنده , , Ingo، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
5
From page :
800
To page :
804
Abstract :
In this note, we study a Modica type gradient estimate for smooth solutions to general non-linear Poisson equation Δ u − f ( u ) = 0 , in M n , u : M n → R where ( M , g ) is a complete Riemannian manifold with bounded geometry and non-negative Ricci curvature and f is the derivative of the non-negative smooth function F ( u ) on R. Then we use this gradient estimate to conclude a Liouville theorem.
Keywords :
Liouville theorem , Modica type gradient estimate , Nonlinear Poisson equation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564546
Link To Document :
بازگشت