Title of article :
Mindlin–Timoshenko systems with Kelvin–Voigt: analyticity and optimal decay rates
Author/Authors :
Jorge Silva، نويسنده , , M.A. and Ma، نويسنده , , T.F. and Muٌoz Rivera، نويسنده , , J.E.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
16
From page :
164
To page :
179
Abstract :
This paper is concerned with asymptotic stability of Mindlin–Timoshenko plates with dissipation of Kelvin–Voigt type on the equations for the rotation angles. We prove that the corresponding evolution semigroup is analytic if a viscoelastic damping is also effective over the equation for the transversal displacements. On the contrary, if the transversal displacement is undamped, we show that the semigroup is neither analytic nor exponentially stable. In addition, in the latter case, we show that the solution decays polynomially and we prove that the decay rate found is optimal.
Keywords :
Optimal decay rate , Mindlin–Timoshenko plate , Kelvin–Voigt , analyticity , Exponential stability , Polynomial stability
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564568
Link To Document :
بازگشت