Title of article :
Quadratic functional equations in a set of Lebesgue measure zero
Author/Authors :
Chung، نويسنده , , Jaeyoung and Rassias، نويسنده , , John Michael، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
11
From page :
1065
To page :
1075
Abstract :
Let R be the set of real numbers, Y a Banach space and f : R → Y . We prove the Hyers–Ulam stability theorem for the quadratic functional inequality ‖ f ( x + y ) + f ( x − y ) − 2 f ( x ) − 2 f ( y ) ‖ ≤ ϵ for all ( x , y ) ∈ Ω , where Ω ⊂ R 2 is of Lebesgue measure 0. Using the same method we dealt with the stability of two more functional equations in a set of Lebesgue measure 0.
Keywords :
Baire category theorem , Quadratic functional equation , First category Lebesgue measure
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564751
Link To Document :
بازگشت