Title of article :
Generalized eigenvalue problems for -Laplacian with indefinite weight
Author/Authors :
Tanaka، نويسنده , , Mieko، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
12
From page :
1181
To page :
1192
Abstract :
This paper presents existence and non-existence results on a positive solution for quasilinear elliptic equations of the form − Δ r u − μ Δ r ⁎ u = λ m r ( x ) | u | r − 2 u in Ω with 1 < r ≠ r ⁎ < ∞ and μ > 0 , under Dirichlet boundary condition, where Ω is a bounded domain in R N and m r is a weight function in L ∞ ( Ω ) admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between λ and the first eigenvalue of r-Laplacian with weight function m r , whence it is independent of the operator Δ r ⁎ and the parameter μ > 0 .
Keywords :
Indefinite weight , Nonlinear eigenvalue problems , ( P , q ) -Laplacian , global minimizer , Mountain pass theorem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564758
Link To Document :
بازگشت