Title of article :
Estimators for alternating nonlinear autoregression
Author/Authors :
Müller، نويسنده , , Ursula U. and Schick، نويسنده , , Anton and Wefelmeyer، نويسنده , , Wolfgang، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Abstract :
Suppose we observe a time series that alternates between different nonlinear autoregressive processes. We give conditions under which the model is locally asymptotically normal, derive a characterization of efficient estimators for differentiable functionals of the model, and use it to construct efficient estimators for the autoregression parameters and the innovation distributions. Surprisingly, the estimators for the autoregression parameters can be improved if we know that the innovation densities are equal.
Keywords :
Linear autoregression , 62G20 , Convolution theorem , 62M05 , regular estimator , Asymptotically linear estimator , Weighted least squares estimator , Newton–Raphson procedure
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis