Title of article :
Third-order power comparisons for a class of tests for multivariate linear hypothesis under general distributions
Author/Authors :
Kakizawa، نويسنده , , Yoshihide، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Pages :
24
From page :
473
To page :
496
Abstract :
The purpose of this paper is, in multivariate linear regression model (Part I) and GMANOVA model (Part II), to investigate the effect of nonnormality upon the nonnull distributions of some multivariate test statistics under normality. It is shown that whatever the underlying distributions, the difference of local powers up to order N − 1 after either Bartlett’s type adjustment or Cornish–Fisher’s type size adjustment under nonnormality coincides with that in Anderson [An Introduction to Multivariate Statistical Analysis, 2nd ed. and 3rd ed., Wiley, New York, 1984, 2003] under normality. The derivation of asymptotic expansions is based on the differential operator associated with the multivariate linear regression model under general distributions. The performance of higher-order results in finite samples, including monotone Bartlett’s type adjustment and monotone Cornish–Fisher’s type size adjustment, is examined using simulation studies.
Keywords :
Local power , nonnormality , secondary62E2062J0562J10 , primary62H1062H15 , asymptotic expansion , Multivariate linear regression model , GMANOVA model , Bartlett’s type adjustment , Cornish–Fisher’s type size adjustment , Differential operator
Journal title :
Journal of Multivariate Analysis
Serial Year :
2009
Journal title :
Journal of Multivariate Analysis
Record number :
1564955
Link To Document :
بازگشت