Title of article :
Extreme value theory for stochastic integrals of Legendre polynomials
Author/Authors :
Aue، نويسنده , , Alexander and Horv?th، نويسنده , , Lajos and Hu?kov?، نويسنده , , Marie، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Pages :
15
From page :
1029
To page :
1043
Abstract :
We study in this paper the extremal behavior of stochastic integrals of Legendre polynomial transforms with respect to Brownian motion. As the main results, we obtain the exact tail behavior of the supremum of these integrals taken over intervals [ 0 , h ] with h > 0 fixed, and the limiting distribution of the supremum on intervals [ 0 , T ] as T → ∞ . We show further how this limit distribution is connected to the asymptotic of the maximally selected quasi-likelihood procedure that is used to detect changes at an unknown time in polynomial regression models. In an application to global near-surface temperatures, we demonstrate that the limit results presented in this paper perform well for real data sets.
Keywords :
primary60G70 , secondary62J0262J12 , Extreme value asymptotics , Gaussian processes , Gumbel distribution , Legendre polynomials , Polynomial regression
Journal title :
Journal of Multivariate Analysis
Serial Year :
2009
Journal title :
Journal of Multivariate Analysis
Record number :
1565044
Link To Document :
بازگشت