Title of article :
Inference on a regression model with noised variables and serially correlated errors
Author/Authors :
You، نويسنده , , Jinhong and Zhou، نويسنده , , Xian and Zhu، نويسنده , , Li-Xing، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Pages :
16
From page :
1182
To page :
1197
Abstract :
Motivated by a practical problem, [Z.W. Cai, P.A. Naik, C.L. Tsai, De-noised least squares estimators: An application to estimating advertising effectiveness, Statist. Sinica 10 (2000) 1231–1243] proposed a new regression model with noised variables due to measurement errors. In this model, the means of some covariates are nonparametric functions of an auxiliary variable. They also proposed a de-noised estimator for the parameters of interest, and showed that it is root- n consistent and asymptotically normal when undersmoothing is applied. The undersmoothing, however, causes difficulty in selecting the bandwidth. In this paper, we propose an alternative corrected de-noised estimator, which is asymptotically normal without the need for undersmoothing. The asymptotic normality holds over a fairly wide range of bandwidth. A consistent estimator of the asymptotic covariance matrix under a general stationary error process is also proposed. In addition, we discuss the fitting of the error structure, which is important for modeling diagnostics and statistical inference, and extend the existing error structure fitting method to this new regression model. A simulation study is made to evaluate the proposed estimators, and an application to a set of advertising data is also illustrated.
Keywords :
Consistency , ARMA model , Asymptotic normality , 62M10 , 62G20 , Serially correlated errors , Regression with noised variables , De-noising , 62G05
Journal title :
Journal of Multivariate Analysis
Serial Year :
2009
Journal title :
Journal of Multivariate Analysis
Record number :
1565060
Link To Document :
بازگشت