• Title of article

    Asymptotics for argmin processes: Convexity arguments

  • Author/Authors

    Kato، نويسنده , , Kengo، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2009
  • Pages
    14
  • From page
    1816
  • To page
    1829
  • Abstract
    The convexity arguments developed by Pollard [D. Pollard, Asymptotics for least absolute deviation regression estimators, Econometric Theory 7 (1991) 186–199], Hjort and Pollard [N.L. Hjort, D. Pollard, Asymptotics for minimizers of convex processes, 1993 (unpublished manuscript)], and Geyer [C.J. Geyer, On the asymptotics of convex stochastic optimization, 1996 (unpublished manuscript)] are now basic tools for investigating the asymptotic behavior of M -estimators with non-differentiable convex objective functions. This paper extends the scope of convexity arguments to the case where estimators are obtained as stochastic processes. Our convexity arguments provide a simple proof for the asymptotic distribution of regression quantile processes. In addition to quantile regression, we apply our technique to LAD (least absolute deviation) inference for threshold regression.
  • Keywords
    Convexity argument , Argmin process , Regression quantile process , Representation theorem , Threshold regression , Parametrized objective function
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2009
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1565167