Title of article
Asymptotics for argmin processes: Convexity arguments
Author/Authors
Kato، نويسنده , , Kengo، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2009
Pages
14
From page
1816
To page
1829
Abstract
The convexity arguments developed by Pollard [D. Pollard, Asymptotics for least absolute deviation regression estimators, Econometric Theory 7 (1991) 186–199], Hjort and Pollard [N.L. Hjort, D. Pollard, Asymptotics for minimizers of convex processes, 1993 (unpublished manuscript)], and Geyer [C.J. Geyer, On the asymptotics of convex stochastic optimization, 1996 (unpublished manuscript)] are now basic tools for investigating the asymptotic behavior of M -estimators with non-differentiable convex objective functions. This paper extends the scope of convexity arguments to the case where estimators are obtained as stochastic processes. Our convexity arguments provide a simple proof for the asymptotic distribution of regression quantile processes. In addition to quantile regression, we apply our technique to LAD (least absolute deviation) inference for threshold regression.
Keywords
Convexity argument , Argmin process , Regression quantile process , Representation theorem , Threshold regression , Parametrized objective function
Journal title
Journal of Multivariate Analysis
Serial Year
2009
Journal title
Journal of Multivariate Analysis
Record number
1565167
Link To Document