Title of article :
Finite-sample inference with monotone incomplete multivariate normal data, I
Author/Authors :
Chang، نويسنده , , Wan-Ying and Richards، نويسنده , , Donald St.P.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Abstract :
We consider problems in finite-sample inference with two-step, monotone incomplete data drawn from N d ( μ , Σ ) , a multivariate normal population with mean μ and covariance matrix Σ . We derive a stochastic representation for the exact distribution of μ ̂ , the maximum likelihood estimator of μ . We obtain ellipsoidal confidence regions for μ through T 2 , a generalization of Hotelling’s statistic. We derive the asymptotic distribution of, and probability inequalities for, T 2 under various assumptions on the sizes of the complete and incomplete samples. Further, we establish an upper bound for the supremum distance between the probability density functions of μ ̂ and μ ˜ , a normal approximation to μ ̂ .
Keywords :
Missing completely at random , Multivariate Esseen’s inequality , Simultaneous confidence intervals , Wishart distribution , Ellipsoidal confidence regions , Hotelling’s T 2 -statistic , Matrix F -distribution , Maximum likelihood estimation
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis