Title of article :
Maximum likelihood inference for the Cox regression model with applications to missing covariates
Author/Authors :
Chen، نويسنده , , Ming-Hui and Ibrahim، نويسنده , , Joseph G. and Shao، نويسنده , , Qi-Man Shao، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Abstract :
In this paper, we carry out an in-depth theoretical investigation for existence of maximum likelihood estimates for the Cox model [D.R. Cox, Regression models and life tables (with discussion), Journal of the Royal Statistical Society, Series B 34 (1972) 187–220; D.R. Cox, Partial likelihood, Biometrika 62 (1975) 269–276] both in the full data setting as well as in the presence of missing covariate data. The main motivation for this work arises from missing data problems, where models can easily become difficult to estimate with certain missing data configurations or large missing data fractions. We establish necessary and sufficient conditions for existence of the maximum partial likelihood estimate (MPLE) for completely observed data (i.e., no missing data) settings as well as sufficient conditions for existence of the maximum likelihood estimate (MLE) for survival data with missing covariates via a profile likelihood method. Several theorems are given to establish these conditions. A real dataset from a cancer clinical trial is presented to further illustrate the proposed methodology.
Keywords :
Missing at Random (MAR) , Existence of partial maximum likelihood estimate , Partial likelihood , Monte Carlo EM algorithm , proportional hazards model , necessary and sufficient conditions
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis