Title of article :
On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding
Author/Authors :
Pِtscher، نويسنده , , Benedikt M. and Leeb، نويسنده , , Hannes، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Abstract :
We study the distributions of the LASSO, SCAD, and thresholding estimators, in finite samples and in the large-sample limit. The asymptotic distributions are derived for both the case where the estimators are tuned to perform consistent model selection and for the case where the estimators are tuned to perform conservative model selection. Our findings complement those of Knight and Fu [K. Knight, W. Fu, Asymptotics for lasso-type estimators, Annals of Statistics 28 (2000) 1356–1378] and Fan and Li [J. Fan, R. Li, Variable selection via non-concave penalized likelihood and its oracle properties, Journal of the American Statistical Association 96 (2001) 1348–1360]. We show that the distributions are typically highly non-normal regardless of how the estimator is tuned, and that this property persists in large samples. The uniform convergence rate of these estimators is also obtained, and is shown to be slower than n − 1 / 2 in case the estimator is tuned to perform consistent model selection. An impossibility result regarding estimation of the estimators’ distribution function is also provided.
Keywords :
Lasso , thresholding , SCAD , Post-model-selection estimator , Finite-sample distribution , Oracle property , Uniform consistency , primary62J0762J0562F1162F1262E15 , Penalized maximum likelihood , Estimation of distribution , Asymptotic distribution
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis