Title of article :
Analysis of multivariate skew normal models with incomplete data
Author/Authors :
Lin، نويسنده , , Tsung I. and Ho، نويسنده , , Hsiu J. and Chen، نويسنده , , Chiang L.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Pages :
15
From page :
2337
To page :
2351
Abstract :
We establish computationally flexible methods and algorithms for the analysis of multivariate skew normal models when missing values occur in the data. To facilitate the computation and simplify the theoretic derivation, two auxiliary permutation matrices are incorporated into the model for the determination of observed and missing components of each observation. Under missing at random mechanisms, we formulate an analytically simple ECM algorithm for calculating parameter estimation and retrieving each missing value with a single-valued imputation. Gibbs sampling is used to perform a Bayesian inference on model parameters and to create multiple imputations for missing values. The proposed methodologies are illustrated through a real data set and comparisons are made with those obtained from fitting the normal counterparts.
Keywords :
Gibbs sampler , ECM algorithm , multiple imputation , MSN model , Posterior distributions , Multivariate truncated normal
Journal title :
Journal of Multivariate Analysis
Serial Year :
2009
Journal title :
Journal of Multivariate Analysis
Record number :
1565317
Link To Document :
بازگشت