Title of article
Asymptotic properties of the Bernstein density copula estimator for -mixing data
Author/Authors
Bouezmarni، نويسنده , , Taoufik and Rombouts، نويسنده , , Jeroen V.K. and Taamouti، نويسنده , , Abderrahim، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2010
Pages
10
From page
1
To page
10
Abstract
Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of the density copula for α -mixing data using Bernstein polynomials. We focus only on the dependence structure between stochastic processes, captured by the copula density defined on the unit cube, and not the complete distribution. We study the asymptotic properties of the Bernstein density copula, i.e., we provide the exact asymptotic bias and variance, we establish the uniform strong consistency and the asymptotic normality. An empirical application is considered to illustrate the dependence structure among international stock markets (US and Canada) using the Bernstein density copula estimator.
Keywords
Copula , Nonparametric estimation , Bernstein polynomial , ? -mixing , Asymptotic properties , Boundary bias
Journal title
Journal of Multivariate Analysis
Serial Year
2010
Journal title
Journal of Multivariate Analysis
Record number
1565327
Link To Document