• Title of article

    Asymptotic properties of the Bernstein density copula estimator for -mixing data

  • Author/Authors

    Bouezmarni، نويسنده , , Taoufik and Rombouts، نويسنده , , Jeroen V.K. and Taamouti، نويسنده , , Abderrahim، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2010
  • Pages
    10
  • From page
    1
  • To page
    10
  • Abstract
    Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of the density copula for α -mixing data using Bernstein polynomials. We focus only on the dependence structure between stochastic processes, captured by the copula density defined on the unit cube, and not the complete distribution. We study the asymptotic properties of the Bernstein density copula, i.e., we provide the exact asymptotic bias and variance, we establish the uniform strong consistency and the asymptotic normality. An empirical application is considered to illustrate the dependence structure among international stock markets (US and Canada) using the Bernstein density copula estimator.
  • Keywords
    Copula , Nonparametric estimation , Bernstein polynomial , ? -mixing , Asymptotic properties , Boundary bias
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2010
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1565327