• Title of article

    Singular value decomposition of large random matrices (for two-way classification of microarrays)

  • Author/Authors

    Bolla، نويسنده , , Marianna and Friedl، نويسنده , , Katalin and Krلmli، نويسنده , , Andrلs، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2010
  • Pages
    13
  • From page
    434
  • To page
    446
  • Abstract
    Asymptotic behavior of the singular value decomposition (SVD) of blown up matrices and normalized blown up contingency tables exposed to random noise is investigated. It is proved that such an m × n random matrix almost surely has a constant number of large singular values (of order m n ), while the rest of the singular values are of order m + n as m , n → ∞ . We prove almost sure properties for the corresponding isotropic subspaces and for noisy correspondence matrices. An algorithm, applicable to two-way classification of microarrays, is also given that finds the underlying block structure.
  • Keywords
    Blown up matrix , Noise matrix , Random perturbation , Two-way classification , Correspondence matrix , Microarray
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2010
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1565365