Title of article :
Estimation and inference for dependence in multivariate data
Author/Authors :
Bodnar، نويسنده , , Olha and Bodnar، نويسنده , , Taras and Gupta، نويسنده , , Arjun K.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Pages :
13
From page :
869
To page :
881
Abstract :
In this paper, a new measure of dependence is proposed. Our approach is based on transforming univariate data to the space where the marginal distributions are normally distributed and then, using the inverse transformation to obtain the distribution function in the original space. The pseudo-maximum likelihood method and the two-stage maximum likelihood approach are used to estimate the unknown parameters. It is shown that the estimated parameters are asymptotical normally distributed in both cases. Inference procedures for testing the independence are also studied.
Keywords :
Multivariate copula , Estimation and inference procedure , Correlation matrix , Pseudo-maximum likelihood method , Test of independence , Multivariate non-normal distribution , Gaussian copula
Journal title :
Journal of Multivariate Analysis
Serial Year :
2010
Journal title :
Journal of Multivariate Analysis
Record number :
1565395
Link To Document :
بازگشت