Title of article :
Asymptotics of the norm of elliptical random vectors
Author/Authors :
Hashorva، نويسنده , , Enkelejd، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Pages :
10
From page :
926
To page :
935
Abstract :
In this paper we consider elliptical random vectors X in R d , d ≥ 2 with stochastic representation A R U , where R is a positive random radius independent of the random vector U which is uniformly distributed on the unit sphere of R d and A ∈ R d × d is a given matrix. Denote by ‖ ⋅ ‖ the Euclidean norm in R d , and let F be the distribution function of R . The main result of this paper is an asymptotic expansion of the probability P { ‖ X ‖ > u } for F in the Gumbel or the Weibull max-domain of attraction. In the special case that X is a mean zero Gaussian random vector our result coincides with the one derived in Hüsler et al. (2002) [1].
Keywords :
Kotz Type distribution , Gaussian distribution , Tail approximation , Density convergence , Gumbel max-domain of attraction , weak convergence , Elliptical distribution
Journal title :
Journal of Multivariate Analysis
Serial Year :
2010
Journal title :
Journal of Multivariate Analysis
Record number :
1565399
Link To Document :
بازگشت