Title of article :
Sparse Bayesian hierarchical modeling of high-dimensional clustering problems
Author/Authors :
Lian، نويسنده , , Heng، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Pages :
10
From page :
1728
To page :
1737
Abstract :
Clustering is one of the most widely used procedures in the analysis of microarray data, for example with the goal of discovering cancer subtypes based on observed heterogeneity of genetic marks between different tissues. It is well known that in such high-dimensional settings, the existence of many noise variables can overwhelm the few signals embedded in the high-dimensional space. We propose a novel Bayesian approach based on Dirichlet process with a sparsity prior that simultaneous performs variable selection and clustering, and also discover variables that only distinguish a subset of the cluster components. Unlike previous Bayesian formulations, we use Dirichlet process (DP) for both clustering of samples as well as for regularizing the high-dimensional mean/variance structure. To solve the computational challenge brought by this double usage of DP, we propose to make use of a sequential sampling scheme embedded within Markov chain Monte Carlo (MCMC) updates to improve the naive implementation of existing algorithms for DP mixture models. Our method is demonstrated on a simulation study and illustrated with the leukemia gene expression dataset.
Keywords :
Dirichlet process , Markov chain Monte Carlo , Sparsity prior , Sequential Sampling
Journal title :
Journal of Multivariate Analysis
Serial Year :
2010
Journal title :
Journal of Multivariate Analysis
Record number :
1565459
Link To Document :
بازگشت