Title of article :
Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix
Author/Authors :
Yata، نويسنده , , Kazuyoshi and Aoshima، نويسنده , , Makoto، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Pages :
18
From page :
2060
To page :
2077
Abstract :
In this paper, we propose a new methodology to deal with PCA in high-dimension, low-sample-size (HDLSS) data situations. We give an idea of estimating eigenvalues via singular values of a cross data matrix. We provide consistency properties of the eigenvalue estimation as well as its limiting distribution when the dimension d and the sample size n both grow to infinity in such a way that n is much lower than d . We apply the new methodology to estimating PC directions and PC scores in HDLSS data situations. We give an application of the findings in this paper to a mixture model to classify a dataset into two clusters. We demonstrate how the new methodology performs by using HDLSS data from a microarray study of prostate cancer.
Keywords :
HDLSS , Microarray data analysis , mixture model , Principal component analysis , Eigenvalue distribution , Singular value , Consistency
Journal title :
Journal of Multivariate Analysis
Serial Year :
2010
Journal title :
Journal of Multivariate Analysis
Record number :
1565484
Link To Document :
بازگشت