Title of article :
Robust estimation of periodic autoregressive processes in the presence of additive outliers
Author/Authors :
Sarnaglia، نويسنده , , A.J.Q. and Reisen، نويسنده , , V.A. and Lévy-Leduc، نويسنده , , C.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Pages :
16
From page :
2168
To page :
2183
Abstract :
This paper suggests a robust estimation procedure for the parameters of the periodic AR (PAR) models when the data contains additive outliers. The proposed robust methodology is an extension of the robust scale and covariance functions given in, respectively, Rousseeuw and Croux (1993) [28], and Ma and Genton (2000) [23] to accommodate periodicity. These periodic robust functions are used in the Yule–Walker equations to obtain robust parameter estimates. The asymptotic central limit theorems of the estimators are established, and an extensive Monte Carlo experiment is conducted to evaluate the performance of the robust methodology for periodic time series with finite sample sizes. The quarterly Fraser River data was used as an example of application of the proposed robust methodology. All the results presented here give strong motivation to use the methodology in practical situations in which periodically correlated time series contain additive outliers.
Keywords :
Additive outliers , Robustness , PAR model , Influence function , periodicity
Journal title :
Journal of Multivariate Analysis
Serial Year :
2010
Journal title :
Journal of Multivariate Analysis
Record number :
1565491
Link To Document :
بازگشت