Title of article :
Local asymptotic normality in a stationary model for spatial extremes
Author/Authors :
Falk، نويسنده , , Michael، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2011
Abstract :
De Haan and Pereira (2006) [6] provided models for spatial extremes in the case of stationarity, which depend on just one parameter β > 0 measuring tail dependence, and they proposed different estimators for this parameter. We supplement this framework by establishing local asymptotic normality (LAN) of a corresponding point process of exceedances above a high multivariate threshold. Standard arguments from LAN theory then provide the asymptotic minimum variance within the class of regular estimators of β . It turns out that the relative frequency of exceedances is a regular estimator sequence with asymptotic minimum variance, if the underlying observations follow a multivariate extreme value distribution or a multivariate generalized Pareto distribution.
Keywords :
Spatial extremes , Multivariate extreme value distribution , Local asymptotic normality , Multivariate exceedances , Extreme value analysis , LAN , Asymptotic efficiency , Regular estimator sequence , Multivariate generalized Pareto distribution
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis