Title of article :
Autoregressive process modeling via the Lasso procedure
Author/Authors :
Nardi، نويسنده , , Y. and Rinaldo، نويسنده , , A.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2011
Abstract :
The Lasso is a popular model selection and estimation procedure for linear models that enjoys nice theoretical properties. In this paper, we study the Lasso estimator for fitting autoregressive time series models. We adopt a double asymptotic framework where the maximal lag may increase with the sample size. We derive theoretical results establishing various types of consistency. In particular, we derive conditions under which the Lasso estimator for the autoregressive coefficients is model selection consistent, estimation consistent and prediction consistent. Simulation study results are reported.
Keywords :
Prediction consistency , Model selection , Lasso procedure , Estimation consistency , Autoregressive model
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis