Title of article :
Applications of quadratic minimisation problems in statistics
Author/Authors :
Albers، نويسنده , , C.J. and Critchley، نويسنده , , F. and Gower، نويسنده , , J.C.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2011
Pages :
9
From page :
714
To page :
722
Abstract :
Albers et al. (2010) [2] showed that the problem min x ( x − t ) ′ A ( x − t ) subject to x ′ B x + 2 b ′ x = k where A  is positive definite or positive semi-definite has a unique computable solution. Here, several statistical applications of this problem are shown to generate special cases of the general problem that may all be handled within a general unifying methodology. These include non-trivial considerations that arise when (i) A  and/or B  are not of full rank and (ii) where B  is indefinite. General canonical forms for A  and B  that underpin the minimisation methodology give insight into structure that informs understanding.
Keywords :
Canonical analysis , constraints , Constrained regression , Hardy–Weinberg , Minimisation , Optimal scaling , Procrustes analysis , Ratios , reduced rank , Quadratic forms , splines
Journal title :
Journal of Multivariate Analysis
Serial Year :
2011
Journal title :
Journal of Multivariate Analysis
Record number :
1565577
Link To Document :
بازگشت