Title of article :
On qualitative robustness of support vector machines
Author/Authors :
Hable، نويسنده , , Robert and Christmann، نويسنده , , Andreas، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2011
Abstract :
Support vector machines (SVMs) have attracted much attention in theoretical and in applied statistics. The main topics of recent interest are consistency, learning rates and robustness. We address the open problem whether SVMs are qualitatively robust. Our results show that SVMs are qualitatively robust for any fixed regularization parameter λ . However, under extremely mild conditions on the SVM, it turns out that SVMs are not qualitatively robust any more for any null sequence λ n , which are the classical sequences needed to obtain universal consistency. This lack of qualitative robustness is of a rather theoretical nature because we show that, in any case, SVMs fulfill a finite sample qualitative robustness property.
fixed regularization parameter, SVMs can be represented by a functional on the set of all probability measures. Qualitative robustness is proven by showing that this functional is continuous with respect to the topology generated by weak convergence of probability measures. Combined with the existence and uniqueness of SVMs, our results show that SVMs are the solutions of a well-posed mathematical problem in Hadamard’s sense.
Keywords :
Nonparametric regression , Classification , Machine Learning , Qualitative robustness , Support Vector Machines
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis