Title of article
A unified approach to non-minimaxity of sets of linear combinations of restricted location estimators
Author/Authors
Kubokawa، نويسنده , , Tatsuya and Strawderman، نويسنده , , William E.، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2011
Pages
16
From page
1429
To page
1444
Abstract
This paper studies minimaxity of estimators of a set of linear combinations of location parameters μ i , i = 1 , … , k under quadratic loss. When each location parameter is known to be positive, previous results about minimaxity or non-minimaxity are extended from the case of estimating a single linear combination, to estimating any number of linear combinations. Necessary and/or sufficient conditions for minimaxity of general estimators are derived. Particular attention is paid to the generalized Bayes estimator with respect to the uniform distribution and to the truncated version of the unbiased estimator (which is the maximum likelihood estimator for symmetric unimodal distributions). A necessary and sufficient condition for minimaxity of the uniform prior generalized Bayes estimator is particularly simple. If one estimates θ = A t μ where A is a k × ℓ known matrix, the estimator is minimax if and only if ( A A t ) i j ≤ 0 for any i and j ( i ≠ j ). This condition is also sufficient (but not necessary) for minimaxity of the MLE.
Keywords
decision theory , Generalized Bayes , Location parameter , Linear combination , Maximum likelihood estimator , Restricted parameter , Minimaxity , Truncated estimator , Location-scale family , Quadratic loss , restricted estimator
Journal title
Journal of Multivariate Analysis
Serial Year
2011
Journal title
Journal of Multivariate Analysis
Record number
1565633
Link To Document