• Title of article

    A unified approach to non-minimaxity of sets of linear combinations of restricted location estimators

  • Author/Authors

    Kubokawa، نويسنده , , Tatsuya and Strawderman، نويسنده , , William E.، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2011
  • Pages
    16
  • From page
    1429
  • To page
    1444
  • Abstract
    This paper studies minimaxity of estimators of a set of linear combinations of location parameters μ i , i = 1 , … , k under quadratic loss. When each location parameter is known to be positive, previous results about minimaxity or non-minimaxity are extended from the case of estimating a single linear combination, to estimating any number of linear combinations. Necessary and/or sufficient conditions for minimaxity of general estimators are derived. Particular attention is paid to the generalized Bayes estimator with respect to the uniform distribution and to the truncated version of the unbiased estimator (which is the maximum likelihood estimator for symmetric unimodal distributions). A necessary and sufficient condition for minimaxity of the uniform prior generalized Bayes estimator is particularly simple. If one estimates θ = A t μ where A is a k × ℓ known matrix, the estimator is minimax if and only if ( A A t ) i j ≤ 0 for any i and j ( i ≠ j ). This condition is also sufficient (but not necessary) for minimaxity of the MLE.
  • Keywords
    decision theory , Generalized Bayes , Location parameter , Linear combination , Maximum likelihood estimator , Restricted parameter , Minimaxity , Truncated estimator , Location-scale family , Quadratic loss , restricted estimator
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2011
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1565633