Title of article :
Robust empirical likelihood inference for generalized partial linear models with longitudinal data
Author/Authors :
Qin، نويسنده , , Guoyou and Bai، نويسنده , , Qiang Yang & Jun Zhu، نويسنده , , Zhongyi، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Abstract :
In this paper, we propose a robust empirical likelihood (REL) inference for the parametric component in a generalized partial linear model (GPLM) with longitudinal data. We make use of bounded scores and leverage-based weights in the auxiliary random vectors to achieve robustness against outliers in both the response and covariates. Simulation studies demonstrate the good performance of our proposed REL method, which is more accurate and efficient than the robust generalized estimating equation (GEE) method (X. He, W.K. Fung, Z.Y. Zhu, Robust estimation in generalized partial linear models for clustered data, Journal of the American Statistical Association 100 (2005) 1176–1184). The proposed robust method is also illustrated by analyzing a real data set.
Keywords :
Empirical likelihood , Generalized estimating equations , efficiency , Generalized partial linear models , Longitudinal data , B -spline , Robustness
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis