• Title of article

    General linear mixed model and signal extraction problem with constraint

  • Author/Authors

    A. Dermoune، نويسنده , , Azzouz and Rahmania، نويسنده , , Nadji and Wei، نويسنده , , Tianwen، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2012
  • Pages
    11
  • From page
    311
  • To page
    321
  • Abstract
    We consider a noisy observed vector y = x + u ∈ R n . The unobserved vector x is a solution of a non-invertible linear system A x = v , where v is a forcing term. A unique solution of the system is obtained by considering additional constraint on the vector x . This constraint is defined by a triple ( β , F , A − ) , where β is a vector, F denotes a matrix whose range is equal to N ( A ) (the null space of A ) and A − is a generalized inverse of A . Each triple ( β , F , A − ) defines the solution x = F β + A − v and the general linear mixed model y = F β + A − v + u . Given the covariance matrices of u and v , we will prove that the best linear unbiased predictor of x knowing y depends only on A . If β is a parameter and ( F , A − ) is given, then we will study the asymptotic behavior of the best linear estimator of β . If the constraint ( β , F , A − ) is not known, then we will estimate it using the data y . Some numerical results will be given.
  • Keywords
    Asymptotic property , Generalized Inverse , BLUE , Maximum likelihood estimator , Auto-regressive model , Inverse problem , BLUP , Signal extraction
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2012
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1565683