• Title of article

    The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications

  • Author/Authors

    Chu، نويسنده , , Yu-Ming and Xia، نويسنده , , Wei-Feng and Zhang، نويسنده , , Xiao-Hui، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2012
  • Pages
    10
  • From page
    412
  • To page
    421
  • Abstract
    For x = ( x 1 , x 2 , … , x n ) ∈ R + n , the second dual form of the Hamy symmetric function is defined by H n ∗ ∗ ( x , r ) = H n ∗ ∗ ( x 1 , x 2 , … , x n ; r ) = ∏ 1 ≤ i 1 < i 2 < ⋯ < i r ≤ n ( ∑ j = 1 r x i j ) 1 r , where r ∈ { 1 , 2 , … , n } and i 1 , i 2 , … , i n are positive integers. s paper, we prove that H n ∗ ∗ ( x , r ) is Schur concave, and Schur multiplicatively and harmonic convex in R + n . Some applications in inequalities and reliability theory are presented.
  • Keywords
    Second dual form , Schur concave , Schur multiplicatively convex , Hamy symmetric function , Schur harmonic convex
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2012
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1565691