Title of article :
Model selection for integrated autoregressive processes of infinite order
Author/Authors :
Ing، نويسنده , , Ching-Kang and Sin، نويسنده , , Chor-yiu and Yu، نويسنده , , Shu-Hui، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Pages :
15
From page :
57
To page :
71
Abstract :
We show that Akaike’s Information Criterion (AIC) and its variants are asymptotically efficient in integrated autoregressive processes of infinite order (AR( ∞ )). This result, together with its stationary counterpart established previously in the literature, ensures that AIC can ultimately achieve prediction efficiency in an AR( ∞ ) process, without knowing the integration order.
Keywords :
Mean squared prediction error , Asymptotic efficiency , Integrated AR( ? ) processes , Model selection
Journal title :
Journal of Multivariate Analysis
Serial Year :
2012
Journal title :
Journal of Multivariate Analysis
Record number :
1565706
Link To Document :
بازگشت