• Title of article

    Asymptotically minimax bias estimation of the correlation coefficient for bivariate independent component distributions

  • Author/Authors

    Shevlyakov، Georgy L. نويسنده , , G.L. and Smirnov، نويسنده , , P.O. and Shin، نويسنده , , V.I. and Kim، نويسنده , , K.، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2012
  • Pages
    7
  • From page
    59
  • To page
    65
  • Abstract
    For bivariate independent component distributions, the asymptotic bias of the correlation coefficient estimators based on principal component variances is derived. This result allows to design an asymptotically minimax bias (in the Huber sense) estimator of the correlation coefficient, namely, the trimmed correlation coefficient, for contaminated bivariate normal distributions. The limit cases of this estimator are the sample, median and MAD correlation coefficients, the last two simultaneously being the most B - and V -robust estimators. In contaminated normal models, the proposed estimators dominate both in bias and in efficiency over the sample correlation coefficient on small and large samples.
  • Keywords
    Robustness , Correlation , Contaminated normal distributions , bias , Independent component distributions
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2012
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1565875