Title of article :
Empirical likelihood inferences for the semiparametric additive isotonic regression
Author/Authors :
Cheng، نويسنده , , Guang and Zhao، نويسنده , , Yichuan and Li، نويسنده , , Bo، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Pages :
11
From page :
172
To page :
182
Abstract :
We consider the (profile) empirical likelihood inferences for the regression parameter (and its any sub-component) in the semiparametric additive isotonic regression model where each additive nonparametric component is assumed to be a monotone function. In theory, we show that the empirical log-likelihood ratio for the regression parameters weakly converges to a standard chi-squared distribution. In addition, our simulation studies demonstrate the empirical advantages of the proposed empirical likelihood method over the normal approximation method in Cheng (2009) [4] in terms of more accurate coverage probability when the sample size is small. It is worthy pointing out that we can construct the empirical likelihood based confidence region without the hassle of tuning any smoothing parameter due to the shape constraints assumed in this paper.
Keywords :
Confidence region , Empirical likelihood , Semiparametric additive model , Isotonic regression
Journal title :
Journal of Multivariate Analysis
Serial Year :
2012
Journal title :
Journal of Multivariate Analysis
Record number :
1565970
Link To Document :
بازگشت