Title of article :
Geometric structures arising from kernel density estimation on Riemannian manifolds
Author/Authors :
Kim، نويسنده , , Yoon Tae and Park، نويسنده , , Hyun Suk، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2013
Abstract :
Estimating the kernel density function of a random vector taking values on Riemannian manifolds is considered. We make use of the concept of exponential map in order to define the kernel density estimator. We study the asymptotic behavior of the kernel estimator which contains geometric quantities (i.e. the curvature tensor and its covariant derivatives). Under a Hِlder class of functions defined on a Riemannian manifold with some global losses, the L 2 -minimax rate and its relative efficiency are obtained.
Keywords :
Exponential map , Minimax convergence rate , Relative efficiency , Riemannian manifolds , Kernel density estimator
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis