Title of article
A subspace estimator for fixed rank perturbations of large random matrices
Author/Authors
Hachem، نويسنده , , Walid and Loubaton، نويسنده , , Philippe and Mestre، نويسنده , , Xavier and Najim، نويسنده , , Jamal and Vallet، نويسنده , , Pascal، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2013
Pages
21
From page
427
To page
447
Abstract
This paper deals with the problem of parameter estimation based on certain eigenspaces of the empirical covariance matrix of an observed multidimensional time series, in the case where the time series dimension and the observation window grow to infinity at the same pace. In the area of large random matrix theory, recent contributions studied the behavior of the extreme eigenvalues of a random matrix and their associated eigenspaces when this matrix is subject to a fixed-rank perturbation. The present work is concerned with the situation where the parameters to be estimated determine the eigenspace structure of a certain fixed-rank perturbation of the empirical covariance matrix. An estimation algorithm in the spirit of the well-known MUSIC algorithm for parameter estimation is developed. It relies on an approach recently developed by Benaych-Georges and Nadakuditi (2011) [8,9], relating the eigenspaces of extreme eigenvalues of the empirical covariance matrix with eigenspaces of the perturbation matrix. First and second order analyses of the new algorithm are performed.
Keywords
MUSIC algorithm , Large random matrix theory , Extreme eigenvalues , Finite rank perturbations
Journal title
Journal of Multivariate Analysis
Serial Year
2013
Journal title
Journal of Multivariate Analysis
Record number
1566087
Link To Document