Title of article :
The cluster bootstrap consistency in generalized estimating equations
Author/Authors :
Cheng، نويسنده , , Guang and Yu، نويسنده , , Zhuqing and Huang، نويسنده , , Jianhua Z. Huang، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2013
Abstract :
The cluster bootstrap resamples clusters or subjects instead of individual observations in order to preserve the dependence within each cluster or subject. In this paper, we provide a theoretical justification of using the cluster bootstrap for the inferences of the generalized estimating equations (GEE) for clustered/longitudinal data. Under the general exchangeable bootstrap weights, we show that the cluster bootstrap yields a consistent approximation of the distribution of the regression estimate, and a consistent approximation of the confidence sets. We also show that a computationally more efficient one-step version of the cluster bootstrap provides asymptotically equivalent inference.
Keywords :
Bootstrap consistency , Clustered/longitudinal data , Generalized estimating equations , Exchangeably weighted cluster bootstrap , One-step bootstrap
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis