• Title of article

    ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis

  • Author/Authors

    Durrande، نويسنده , , N. and Ginsbourger، نويسنده , , D. and Roustant، نويسنده , , O. and Carraro، نويسنده , , L.، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2013
  • Pages
    11
  • From page
    57
  • To page
    67
  • Abstract
    Given a reproducing kernel Hilbert space ( H , 〈 . , . 〉 ) of real-valued functions and a suitable measure μ over the source space D ⊂ R , we decompose H as the sum of a subspace of centered functions for μ and its orthogonal in H . This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.
  • Keywords
    Gaussian process regression , SS-ANOVA , Hoeffding–Sobol decomposition , Global sensitivity analysis
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2013
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1566107