Title of article
ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis
Author/Authors
Durrande، نويسنده , , N. and Ginsbourger، نويسنده , , D. and Roustant، نويسنده , , O. and Carraro، نويسنده , , L.، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2013
Pages
11
From page
57
To page
67
Abstract
Given a reproducing kernel Hilbert space ( H , 〈 . , . 〉 ) of real-valued functions and a suitable measure μ over the source space D ⊂ R , we decompose H as the sum of a subspace of centered functions for μ and its orthogonal in H . This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.
Keywords
Gaussian process regression , SS-ANOVA , Hoeffding–Sobol decomposition , Global sensitivity analysis
Journal title
Journal of Multivariate Analysis
Serial Year
2013
Journal title
Journal of Multivariate Analysis
Record number
1566107
Link To Document