Title of article :
ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis
Author/Authors :
Durrande، نويسنده , , N. and Ginsbourger، نويسنده , , D. and Roustant، نويسنده , , O. and Carraro، نويسنده , , L.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2013
Pages :
11
From page :
57
To page :
67
Abstract :
Given a reproducing kernel Hilbert space ( H , 〈 . , . 〉 ) of real-valued functions and a suitable measure μ over the source space D ⊂ R , we decompose H as the sum of a subspace of centered functions for μ and its orthogonal in H . This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.
Keywords :
Gaussian process regression , SS-ANOVA , Hoeffding–Sobol decomposition , Global sensitivity analysis
Journal title :
Journal of Multivariate Analysis
Serial Year :
2013
Journal title :
Journal of Multivariate Analysis
Record number :
1566107
Link To Document :
بازگشت