Title of article
Functional contour regression
Author/Authors
Wang، نويسنده , , Guochang and Lin، نويسنده , , Nan and Zhang، نويسنده , , Baoxue، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2013
Pages
13
From page
1
To page
13
Abstract
In this paper, we propose functional contour regression (FCR) for dimension reduction in the functional regression context. FCR achieves dimension reduction using the empirical directions on the functional predictor in contours defined on the response variable. It is more efficient than the functional variants of the sliced inverse regression (SIR) method by exploiting inter-slice information. A modified BIC is used to determine the dimensionality of the effective dimension reduction space. We prove that FCR is consistent in estimating the functional regression parameters, and simulations show that the estimates given by our FCR method provide better prediction accuracy than other existing methods such as functional sliced inverse regression, functional inverse regression and wavelet SIR. The merit of FCR is further demonstrated by two real data examples.
Keywords
Contour regression , dimension reduction , Effective dimension reduction , Functional regression , Inverse regression
Journal title
Journal of Multivariate Analysis
Serial Year
2013
Journal title
Journal of Multivariate Analysis
Record number
1566171
Link To Document