Title of article
Frontier estimation with kernel regression on high order moments
Author/Authors
Girard، نويسنده , , Stéphane and Guillou، نويسنده , , Armelle and Stupfler، نويسنده , , Gilles، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2013
Pages
18
From page
172
To page
189
Abstract
We present a new method for estimating the frontier of a multidimensional sample. The estimator is based on a kernel regression on high order moments. It is assumed that the order of the moments goes to infinity while the bandwidth of the kernel goes to zero. The consistency of the estimator is proved under mild conditions on these two parameters. The asymptotic normality is also established when the conditional distribution function decreases at a polynomial rate to zero in the neighborhood of the frontier. The good performance of the estimator is illustrated in some finite sample situations.
Keywords
Frontier estimation , Consistency , Asymptotic normality , Kernel Estimation
Journal title
Journal of Multivariate Analysis
Serial Year
2013
Journal title
Journal of Multivariate Analysis
Record number
1566200
Link To Document