Title of article
Minimaxity in predictive density estimation with parametric constraints
Author/Authors
Kubokawa، نويسنده , , Tatsuya and Marchand، نويسنده , , ةric and Strawderman، نويسنده , , William E. and Turcotte، نويسنده , , Jean-Philippe، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2013
Pages
16
From page
382
To page
397
Abstract
This paper is concerned with estimation of a predictive density with parametric constraints under Kullback–Leibler loss. When an invariance structure is embedded in the problem, general and unified conditions for the minimaxity of the best equivariant predictive density estimator are derived. These conditions are applied to check minimaxity in various restricted parameter spaces in location and/or scale families. Further, it is shown that the generalized Bayes estimator against the uniform prior over the restricted space is minimax and dominates the best equivariant estimator in a location family when the parameter is restricted to an interval of the form [ a 0 , ∞ ) . Similar findings are obtained for scale parameter families. Finally, the presentation is accompanied by various observations and illustrations, such as normal, exponential location, and gamma model examples.
Keywords
Bayes estimators , dominance , decision theory , Kullback–Leibler loss , Invariance , Location family , Location–scale family , Minimaxity , restricted parameter space , Predictive density , order restriction , Scale family
Journal title
Journal of Multivariate Analysis
Serial Year
2013
Journal title
Journal of Multivariate Analysis
Record number
1566225
Link To Document