• Title of article

    Properties and applications of Fisher distribution on the rotation group

  • Author/Authors

    Sei، نويسنده , , Tomonari and Shibata، نويسنده , , Hiroki and Takemura، نويسنده , , Akimichi and Ohara، نويسنده , , Katsuyoshi and Takayama، نويسنده , , Nobuki، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2013
  • Pages
    16
  • From page
    440
  • To page
    455
  • Abstract
    We study properties of Fisher distribution (von Mises–Fisher distribution, matrix Langevin distribution) on the rotation group S O ( 3 ) . In particular we apply the holonomic gradient descent, introduced by Nakayama et al. (2011) [16], and a method of series expansion for evaluating the normalizing constant of the distribution and for computing the maximum likelihood estimate. The rotation group can be identified with the Stiefel manifold of two orthonormal vectors. Therefore from the viewpoint of statistical modeling, it is of interest to compare Fisher distributions on these manifolds. We illustrate the difference with an example of near-earth objects data.
  • Keywords
    Directional statistics , Algebraic statistics , Holonomic gradient descent , Maximum likelihood estimation , Rotation group
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2013
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1566237