Title of article
Properties and applications of Fisher distribution on the rotation group
Author/Authors
Sei، نويسنده , , Tomonari and Shibata، نويسنده , , Hiroki and Takemura، نويسنده , , Akimichi and Ohara، نويسنده , , Katsuyoshi and Takayama، نويسنده , , Nobuki، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2013
Pages
16
From page
440
To page
455
Abstract
We study properties of Fisher distribution (von Mises–Fisher distribution, matrix Langevin distribution) on the rotation group S O ( 3 ) . In particular we apply the holonomic gradient descent, introduced by Nakayama et al. (2011) [16], and a method of series expansion for evaluating the normalizing constant of the distribution and for computing the maximum likelihood estimate. The rotation group can be identified with the Stiefel manifold of two orthonormal vectors. Therefore from the viewpoint of statistical modeling, it is of interest to compare Fisher distributions on these manifolds. We illustrate the difference with an example of near-earth objects data.
Keywords
Directional statistics , Algebraic statistics , Holonomic gradient descent , Maximum likelihood estimation , Rotation group
Journal title
Journal of Multivariate Analysis
Serial Year
2013
Journal title
Journal of Multivariate Analysis
Record number
1566237
Link To Document