• Title of article

    Strong consistency of -parameters clustering

  • Author/Authors

    Gallegos، نويسنده , , Marيa Teresa and Ritter، نويسنده , , Gunter، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2013
  • Pages
    18
  • From page
    14
  • To page
    31
  • Abstract
    Pollard showed for k -means clustering and a very broad class of sampling distributions that the optimal cluster means converge to the solution of the related population criterion as the size of the data set increases. We extend this consistency result to k -parameters clustering, a method derived from the heteroscedastic, elliptical classification model. It allows a more sensitive data analysis and has the advantage of being affine equivariant. Moreover, the present theory yields a consistent criterion for selecting the number of clusters in such models.
  • Keywords
    elliptical models , Maximum likelihood estimation , Cluster analysis , Classification models , Strong consistency
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2013
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1566246