Title of article
Supervised component generalized linear regression using a PLS-extension of the Fisher scoring algorithm
Author/Authors
Bry، نويسنده , , X. and Trottier، نويسنده , , C. and Verron، نويسنده , , T. and Mortier، نويسنده , , F.، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2013
Pages
14
From page
47
To page
60
Abstract
In the current estimation of a GLM model, the correlation structure of regressors is not used as the basis on which to lean strong predictive dimensions. Looking for linear combinations of regressors that merely maximize the likelihood of the GLM has two major consequences: (1) collinearity of regressors is a factor of estimation instability, and (2) as predictive dimensions may lean on noise, both predictive and explanatory powers of the model are jeopardized. For a single dependent variable, attempts have been made to adapt PLS regression, which solves this problem in the classical Linear Model, to GLM estimation. In this paper, we first discuss the methods thus developed, and then propose a technique, Supervised Component Generalized Linear Regression (SCGLR), that combines PLS regression with GLM estimation in the multivariate context. SCGLR is tested on both simulated and real data.
Keywords
Supervised component generalized linear regression , Generalized Linear Models , PLS regression , Fisher scoring algorithm
Journal title
Journal of Multivariate Analysis
Serial Year
2013
Journal title
Journal of Multivariate Analysis
Record number
1566328
Link To Document