Title of article :
A necessary test for complete independence in high dimensions using rank-correlations
Author/Authors :
Wang، نويسنده , , Guanghui and Zou، نويسنده , , Changliang and Wang، نويسنده , , Zhaojun، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2013
Abstract :
We propose a nonparametric necessary test for the complete independence of random variables in high-dimensional environment. The test is constructed based on Spearman’s rank-correlations and is shown to be asymptotically normal by the martingale central limit theorem as both the sample size and the dimension of variables go to infinity. Simulation studies show that the proposed test works well in finite-sample situations.
Keywords :
Necessary tests , Spearman’s rank-correlation , Asymptotic normality , Complete independence , High-dimensional problem
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis