Title of article :
Nonparametric estimation of means on Hilbert manifolds and extrinsic analysis of mean shapes of contours
Author/Authors :
Ellingson، نويسنده , , Leif and Patrangenaru، نويسنده , , Vic and Ruymgaart، نويسنده , , Frits، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2013
Pages :
17
From page :
317
To page :
333
Abstract :
Motivated by the problem of nonparametric inference in high level digital image analysis, we introduce a general extrinsic approach for data analysis on Hilbert manifolds with a focus on means of probability distributions on such sample spaces. To perform inference on these means, we appeal to the concept of neighborhood hypotheses from functional data analysis and derive a one-sample test. We then consider the analysis of shapes of contours lying in the plane. By embedding the corresponding sample space of such shapes, which is a Hilbert manifold, into a space of Hilbert–Schmidt operators, we can define extrinsic mean shapes of random planar contours and their sample analogues. We then apply the general methods to this problem while considering the computational restrictions faced when utilizing digital imaging data. Comparisons of computational cost are provided to another method for analyzing shapes of contours.
Keywords :
Nonparametric bootstrap , Extrinsic mean , Data analysis on Hilbert manifolds , digital image analysis , Planar contours , Statistical shape analysis , Automated randomized landmark selection
Journal title :
Journal of Multivariate Analysis
Serial Year :
2013
Journal title :
Journal of Multivariate Analysis
Record number :
1566483
Link To Document :
بازگشت