Title of article :
Maximal non-exchangeability in dimension
Author/Authors :
Harder، نويسنده , , Michael and Stadtmüller، نويسنده , , Ulrich، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2014
Abstract :
We give the maximal distance between a copula and itself when the argument is permuted for arbitrary dimension, generalizing a result for dimension two by Nelsen (2007), Klement and Mesiar (2006). Furthermore, we establish a subset of [ 0 , 1 ] d in which this bound might be attained. For each point in this subset we present a copula and a permutation, for which the distance in this point is maximal. In the process, we see that this subset depends on the dimension being even or odd.
Keywords :
Symmetry , Shuffle of Min , Copula
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis