Title of article :
Local asymptotic minimax estimation of nonregular parameters with translation-scale equivariant maps
Author/Authors :
Song، نويسنده , , Kyungchul، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2014
Abstract :
When a parameter of interest is defined to be a nondifferentiable transform of a regular parameter, the parameter does not have an influence function, rendering the existing theory of semiparametric efficient estimation inapplicable. However, when the nondifferentiable transform is a known composite map of a continuous piecewise linear map with a single kink point and a translation-scale equivariant map, this paper demonstrates that it is possible to define a notion of asymptotic optimality of an estimator as an extension of the classical local asymptotic minimax estimation. This paper establishes a local asymptotic risk bound and proposes a general method to construct a local asymptotic minimax decision.
Keywords :
Nonregular parameters , Translation-scale equivariant transforms , Semiparametric efficiency , Local asymptotic minimax estimation
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis